le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
LOG1(s1(s1(x))) -> QUOT2(x, s1(s1(0)))
LOG1(s1(s1(x))) -> LOG1(s1(quot2(x, s1(s1(0)))))
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
LOG1(s1(s1(x))) -> QUOT2(x, s1(s1(0)))
LOG1(s1(s1(x))) -> LOG1(s1(quot2(x, s1(s1(0)))))
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = x1
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
Used ordering: Polynomial interpretation [21]:
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
POL(0) = 0
POL(IF_MINUS3(x1, x2, x3)) = x2
POL(MINUS2(x1, x2)) = 1 + x1
POL(false) = 0
POL(le2(x1, x2)) = 0
POL(s1(x1)) = 1 + x1
POL(true) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
POL(0) = 0
POL(QUOT2(x1, x2)) = x1
POL(false) = 0
POL(if_minus3(x1, x2, x3)) = x2
POL(le2(x1, x2)) = 0
POL(minus2(x1, x2)) = x1
POL(s1(x1)) = 1 + x1
POL(true) = 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
minus2(0, y) -> 0
if_minus3(true, s1(x), y) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
LOG1(s1(s1(x))) -> LOG1(s1(quot2(x, s1(s1(0)))))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG1(s1(s1(x))) -> LOG1(s1(quot2(x, s1(s1(0)))))
POL(0) = 0
POL(LOG1(x1)) = x1
POL(false) = 0
POL(if_minus3(x1, x2, x3)) = x2
POL(le2(x1, x2)) = 0
POL(minus2(x1, x2)) = x1
POL(quot2(x1, x2)) = x1
POL(s1(x1)) = 1 + x1
POL(true) = 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
quot2(0, s1(y)) -> 0
minus2(0, y) -> 0
if_minus3(true, s1(x), y) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
log1(s1(0)) -> 0
log1(s1(s1(x))) -> s1(log1(s1(quot2(x, s1(s1(0))))))